
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Effect of Friction on Motion

\qquad

- The greater the friction the better the \qquad ability to stop.
- If the friction is reduced, it will take longer to stop.
\qquad
\qquad
\qquad
\qquad
\qquad

Weather and Road Conditions

- How do each of the following effect the \qquad ability to stop a car?
- Icy
\qquad
- Wet
- Snow-covered \qquad
- Dry
- Gravel
- Dirt

Braking Distance

- When you put your foot on the brake of a car, the car starts to slow down and will eventually stop.
- However, there is a time between when you notice that you should stop and when your foot actually touches the brakes.
- Reaction time

Factors that Influence Braking Distance

- Reaction time
- Age of driver
- Friction
- Weather and road conditions
- Condition of driver \qquad
- Lack of sleep
- Drugs and alcohol consumption \qquad
- Speed
- Faster speeds mean longer braking distance \qquad
\qquad

Calculating Braking Distance

- Braking distance can be calculated with \qquad the following formula:

$$
d=k v^{2}
$$

- d is the braking distance
- k is a constant representing road conditions
- v is the velocity of the car

The Constant k

- k depends on the friction of the two \qquad surfaces in contact with each other
- Surfaces with a lot of friction have a low value for k
- Slippery surfaces have a high value of k
- For example
- Dry pavement: $k=0.06 \mathrm{~m} / \mathrm{s}$
- Snow and ice: $k=0.15 \mathrm{~m} / \mathrm{s}$
\qquad
\qquad
\qquad
\qquad
\qquad

Example

\qquad

- Find the braking distance for a car with a \qquad velocity of $50 \mathrm{~km} / \mathrm{h}$ on dry pavement ($k=0.06 \mathrm{~m} / \mathrm{s}$).

$$
\mathrm{d}=11.6 \mathrm{~m}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Reaction Time

- In real life, there is a delay between when \qquad a driver sees that he or she needs to stop and when the foot actually hits the brakes. \qquad
- During this time the car continues to move forward \qquad
- The distance the car travels during the reaction time should be included in the
\qquad stopping distance calculation.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 2

\qquad

- A car is moving at $50 \mathrm{~km} / \mathrm{h}$ on dry pavement ($\mathrm{k}=0.06$). Suddenly, 34 m away, a small dog darts into the roadway. The driver's reaction time is 1.5 s . Calculate the total stopping distance of the car.

